Insights into the mechanisms of adenosylcobalamin (coenzyme B12)-dependent enzymes from rapid chemical quench experiments.

نویسنده

  • E Neil G Marsh
چکیده

Glutamate mutase is one of a group of adenosylcobalamin-dependent enzymes that use free radicals to catalyse unusual and chemically difficult rearrangements involving 1,2-migrations of hydrogen atoms. A key mechanistic feature of these enzymes is the transfer of the migrating hydrogen atom between substrate, coenzyme and product. The present review summarizes recent experiments from my laboratory that have used rapid chemical quench techniques to identify intermediates in the reaction and probe the mechanism of hydrogen transfer through a variety of pre-steady-state kinetic isotope effect measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ reactivation of glycerol-inactivated coenzyme B12-dependent enzymes, glycerol dehydratase and diol dehydratase.

The catalytic properties of coenzyme B12-dependent glycerol dehydratase and diol dehydratase were studied in situ with Klebsiella pneumoniae cells permeabilized by toluene treatment, since the in situ enzymes approximate the in vivo conditions of the enzymes more closely than enzymes in cell-free extracts or cell homogenates. Both dehydratases in situ underwent rapid "suicidal" inactivation by ...

متن کامل

The Radical Use of Rossmann and TIM Barrel Architectures for Controlling Coenzyme B[subscript 12] Chemistry

The ability of enzymes to harness free-radical chemistry allows for some of the most amazing transformations in nature, including reduction of ribonucleotides and carbon skeletal rearrangements. Enzyme cofactors involved in this chemistry can be large and complex, such as adenosylcobalamin (coenzyme B12), simpler such as “poor man’s B12” (S-adenosylmethionine and an iron-sulfur cluster), or ver...

متن کامل

Binding of Cob(II)alamin to the adenosylcobalamin-dependent ribonucleotide reductase from Lactobacillus leichmannii. Identification of dimethylbenzimidazole as the axial ligand.

The ribonucleoside triphosphate reductase (RTPR) from Lactobacillus leichmannii catalyzes the reduction of nucleoside 5'-triphosphates to 2'-deoxynucleoside 5'-triphosphates and uses coenzyme B12, adenosylcobalamin (AdoCbl), as a cofactor. Use of a mechanism-based inhibitor, 2'-deoxy-2'-methylenecytidine 5'-triphosphate, and isotopically labeled RTPR and AdoCbl in conjunction with EPR spectrosc...

متن کامل

Studies on the mechanism of adenosylcobalamin-dependent ribonucleotide reduction by the use of analogs of the coenzyme.

A series of 17 analogs of 5'-deoxy-5'-adenosylcobalamin(adenosylcobalamin) have been synthesized with modifications in the base or ribose moiety of the nucleoside ligand. These analogs have been examined for their effects on reactions catalyzed by the ribonucleotide reductase of Lactobacillus leichmannii. All the analogs are inhibitors of ATP reduction in the presence of adenosylcobalamin as co...

متن کامل

Cobalamin-dependent methionine synthase: the structure of a methylcobalamin-binding fragment and implications for other B12-dependent enzymes.

Cobalamin-dependent methionine synthase is a large enzyme composed of structurally and functionally distinct regions. Recent studies have begun to define the roles of several regions of the protein. In particular, the structure of a 27 kDa cobalamin-binding fragment of the enzyme from Escherichia coli has been determined by X-ray crystallography, and has revealed the motifs and interactions res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 37 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2009